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In 1935, R. Robinson and W.S. Rapson were preparing substances related to the sterols when they found that the
sodium enolate of cyclnhexannne reacted with various acyclic and cyclic o,f-unsaturated ketones to afford
substituted cyclnhexennnes Robinson recognized the generality of this transformation, which was quickly adapted
by the synthetic community, and today it is widely used in the synthesis of complex natural products. The reaction of
a ketone (most often a cyclic one) with an o,f-unsaturated ketone to give a substituted cyclohexenone derivative is
known as the Robinson annulation. The general features of the reaction are: 1) it is a combination of three reactions:
Michael addition, intramolecular aldol reaction, and dehydration; 2) it can be both acid- and base-catalyzed, but
predominantly the reaction is conducted under basic conditions; 3) acyclic enones and cyclic ketones afford bicyclic
enones, whereas cyclic enones and cyclic ketones give rise to polycyclic fused enones; 4) methyl vinyl ketone (MVK)
and its various derivatives and surrogates are used most often as the enone component; 5) can be conducted as a
one-pot process, but yields tend to be higher when the Michael adduct is isclated and then subjected to the aldol
reaction; B) the alkylation of an unsymmetrical ketone occurs regioselectively at the most substituted a-position
unless severe steric interference dictates otherwise; 7) regioselective cyclization can also be achieved by using pre-
formed enolates or enamines under non-equilibrium conditions; 8) the annulation can generate as many as five
stereocenters, but in the dehydration step two of these chiral centers are lost; EJ) the relative stereochemistry between
R*and R’ (cis or trans) is dependent on the reaction conditions (e.g., solvent);" and 10) the enantioselective version
Is known as the Hajos-Farrish reaction.’”"
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Mechanism: '

The Robinson annulation has three distinct steps: the Michael addition of the enol or enolate across the double bond
of the o.f-unsaturated ketone to produce a 1,5-diketone (Michael adduct), followed by an intramolecular aldol
reaction, which affords a cyclic f-hydroxy ketone (keto alcohol), and finally a base-catalyzed dehydration which gives
nse to the substituted cyclohexenone. An alternative mechanism via disrotatory electrocyclic ring closure is
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Synthetic Applications:

A conjugate cuprate addition-Robinson annulfanr:m sequence was utilized in the highly stereoselective total synthesis
of hispidospermidin by S.J. Danishefsky et al.™ It is a well-known fact that the MVK has a great tendency to
polymerize under aprotic basic conditions that are used when the integrity of the enolate reaction partner has to be
maintained. In order to avoid complications arising from the likely polymerization :rf MVI{ ctrimethylsilyl methyl vinyl
ketone (a base-stable surrogate of MVK developed by G. Stork and co- workers' 14]1 was chosen as the reaction
partner. The 2-substituted cylopentenone was treated with lithium dimethyl cuprate, and the resulting enclate was
trapped with c-trimethylsilyl MVK in a Michael addition. The crude Michael adduct was refluxed with agqueous KOH in
methanol, which resulted in the desired hydrindencne as a single diastereomer.
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In the laboratory of J.D. White, the asymmetric total synthesis of (+)-codeine was accomplished.® The Robinson
annulation was the method of choice to build a phenanthrenone precursor starting from a substituted tetralone
derivative. As it is usually the case, the isolation of the Michael adduct allowed the intramolecular aldol reaction to
proceed cleanly and to afford a higher yield of the annulated product.
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The Hajos-Parrish reaction can be regarded as the enantioselective version of the Robinson annulation. In the early
stages of the synthetic effort targeting the mixed polyketide-terpencid metabaolite (—)-austalide E L.A. Paquette and
co-workers used this transformation to prepare the key bicyclic precursor in enantiopure form.” Ethg.rl vinyl ketone
was reacted with 2-methyl-1,3-cyclopentanedione in the presence of catalytic amounts of L-valine to afford the
bicyclic diketone with a 75% ee.
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A nowvel variant of the Stork-Jung modified Robinson annulation was developed and applied to the formal total
synthesis of (z)-guanacastepene A by the research group of B.B. Snider.® Instead of using MVK directly, they
prepared the necessary 1,5-diketone by alkylating the ketone with an allylsilane and generating the ketone
functionality via a Fleming-Tamao oxidation.
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Robinson annulation

Michael addition of cyclohexanones to methyl vinyl ketone followed by in-
tramolecular aldol condensation to afford six-membered «,B-unsaturated ketones.
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Example 1, Homo-Robinson’
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Example 3, Double Robinson-type cyclopentene annulation’
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The Robinson Annulation can also proceed under acidic
catalysis, with the entire process occurring in one pot, as shown
below. The use of a precursor of the a,pf-unsaturated ketone, such as
a B-chloroketone, can reduce the steady-state concentration of enone
and decrease the side reaction of polymerization.
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Notes:

This reaction is a “biomimetic” approach to forming alkaloids.

14



Examples:

MeOOC 0 MeOOC
Me CHO Hooc\)k,cooﬂ Me . .:
-
0
Me CHO PrNH,, THF Me
74%

T. Jarevang, H. Anke, T. Anke, G. Erkel, O. Sterner, Acta Chemica Scandinavica 1998, 52, 1350
(AN 1998:770310

M
)
HO,C N
CHO
QC + MeNH; + 0 — O~
CHO

HO,C no yield given
O
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VILSMEIER-HAACK FORMYLATION

Importance:

In 1925, A. Vilsmeier and co-workers reported that upon treatment with phosphoryl chloride (POCk), N-
methylacetanilide gave rise to a mixture of products among which 4-chloro-1,2-dimethylquinolinium chloride was one
of the major products.” Further investigation revealed that the reaction between N-methylformanilide and POCI; gave
rise to a chloromethyliminium salt (Vilsmeier reagent), which readily reacts with electron-rich aromatic compounds to
yield substituted benzaldehydes.z The introduction of a formyl group into electron-rich aromatic compounds using a
Vilsmeier reagent is known as the Vilsmeier-Haack formylation (Vilsmeier reaction). The general features of this
transformation are:'" 1) the Vilsmeier reagent is prepared from any N, N-disubstituted formamide by reacting it with
an acid chloride (e.g., POCls, SOCIz, oxalyl chloride); 2) most often the combination of DMF and POCIs is used and
the resulting Vilsmeier reagent is usually isolated before use; 3) mostly electron-rich aromatic or heteroaromatic
compounds® as well as electron-rich alkenes and 1.3-dienes’’ are substrates for the transformation, since the
Vilsmeier reagent is a weak electrophile; 4) the relative reactivity of five-membered heterocycles is pyrrole > furan >
thiophene; 5) the solvent is usually a halogenated hydrocarbon, DMF or POCIs and the nature of the solvent has a
profound effect on the electrophilicity of the reagent, so it should be carefully chosen; 6) the required reaction
temperature varies widely depending on the reactivity of the substrate and it ranges from below 0 *C up to 80 °C; 7)
the initial product is an iminium salt, which can be hydrolyzed with water to the corresponding aldehyde, treated with
H:S to afford thioaldehydes, reacted with hydroxylamine to afford nitriles, or reduced to give amines; 8) the
transformation is regioselective favoring the less sterically hindered position (this means the para position on a
substituted benzene ring); but electronic effects can also influence the product distribution; and 9) vinylogous
chloromethyliminium salts undergo similar reaction to afford the corresponding o,f-unsaturated carbonyl compounds
upon hydrolysis.
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Vilsmeier (1925):

Vilsmeier (1927 ):
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EDG = OH, O-alkyl. O-aryl, NRy: R**= H, alkyl, aryl; R® = alkyl, aryl; X = O, NR, CH,, CR5; Y = 0, S, NR, NH: R® = H, alkyl, aryl




Mechanism:

Formation of the Vilsmeier reagent (an equilibrium mixture of iminium salts):

E‘JN—<
R' ¢ yd Rz OPOCIL

R™H C H
| R.® S |
R '[“U{J"\E,P-D = HEN_J\DEEF' = RE'[“JUT{D WA
: (L c N\ Efral=< OPOC)
Cl 0=p-Cl , :
3 R Cl

Eler:trnphilir: aromatic substitution ofthe electron-rich aromatic substrate followed by hydrolysis:
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Synthetic Applications:

The tot

al synthesis of the calophylium coumarin (-)-calanclide A was accomplished by D.C. Baker and co-workers. ”

This compound attracted considerable attention because it is a potent inhibitor of HIV-1 reverse transcriptase. In

order to introduce a
substrate.

Fh 0

O " N—

CH; H
POCI;/ DCE
80 °C, 5h; 84%
2. agueous work-up

L}

HO o 0

(£ 5

formyl group at C8, a regioselective Vilsmeier reaction was employed on a coumarin lactone

HyC CHs

CH

CHy (-)-Calanclide A

In the laboratory of F.E. Ziegler, the cyclization of a chiral EZII’IdII’Iw radical into an indole nucleus was utilized to

prepare the core nucleus of the potent antitumor agent FR- EIUU4EE

1 the early stages of the synthetic effort, the

Vilsmeier-Haack formylation was chosen to install an aldehyde functionality at the C3 position of a substituted indole
substrate. The initial iminium salt was hydrolyzed under very mildly basic conditions to minimize the hydrolysis of the
methyl ester moiety. Eventually the formyl group was removed from the molecule via decarbonylation using

Wilkinson's catalyst.

OBn 1. POCl; (1.25 equiv) OBn H
DMF (solvent), 0 °C C=q
| 45 min then r.t., 3h
2. 1% NaHCOs (ag.)
MeO,C N
2 H 2% MEDEC H

Core structure of FR-800482
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Since the Vilsmeler-Haack formylation is feasible on electron-rich alkenes such as enol ethers, it was a method of

choice to prepare an o,f-unsaturated aldehyde during the total synthesis of (=)-illudin C by R.L. Funk et al.

* The TES

enol ether was treated with several reagent combinations (e.qg., PBry/DMF/DCM), but unfortunately only regioisomeric
product mixtures were obtained. However, the use of POBrs/DMF/DCM allowed the clean preparation of the desired

aldehyde regioisomer in good yield.

1. DMF (1.2 equiv), POBr3 (1 equiv)
DCM, r.t.1h, then 72h at rt

h 2. Hz0,0°C; 64%

TESO e T & f

The marine sponge pigment homofascaplysin C was synthesized by the research team of G.W. Gribble.

(Hlludin C

18 The natural

product had a novel 12H-pyrido[1,2-a:3,4-b'|diindole ring system and a formyl group at the C13 position. The
Vilsmeier reaction allowed the introduction of this substituent in excellent yield.

| 1. TFA 1.t
ED min |
N
k | T2pPde) AN
Et-diglyme |
heat, Bh

12H-Pyrido[1,2-a;3.4-bdiindole

POCl;
(1.1 equiv)

DMF (solvent)

rt.. 3h then

o
i

2N NaOH (aq.)

88%

Homofascaplysin G
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The total synthesis of (<)-(R)}-MEM-protected arthrographol was accomplished by G.L.D. Krupadanam et al.” The
authors used sequential Vilsmeier reaction/Dakin oxidation to prepare a 1,2 4-rihydroxybenzene derivative.

OH

HO
resorcingl

1. DMF
(1 equiv)
_—
POCl;
(1.15 equiv)
CHiCN, 05 °C

H,0

50 °C
0.5h
BO% Ho

OH

(-F{R}F-MEM-protected
arthrographol (R = MEM)
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